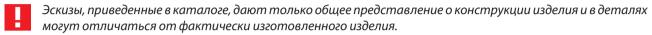
ПНЕВМОПРИВОДЫ

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93


Эл. почта: vpk@nt-rt.ru || Сайт: http://varklapan.nt-rt.ru

Для удобства пользования каталогом все изделия систематизированы по разделам в соответствии с видом арматуры и расположена в разделах в порядке возрастания номинальных давлений рабочей среды. В каталоге отражаются сведения о наименовании продукции, ее назначении, области применения, технических и массогабаритных характеристиках, а также предоставляется возможность комплектования соответствующими приводами для выбранного вида арматуры.

При выборе арматуры для агрессивных сред необходимо предусмотреть, чтобы материал основных деталей был стойким к этим средам.

При заказе арматуры необходимо указывать рабочую среду и рабочие параметры, а также необходимость дополнительных испытаний на:

- межкристаллитную коррозию;
- ударный изгиб при пониженной температуре.

Несущественные изменения при совершенствовании конструкций, не влияющие на качество изделий, могут не отражаться в каталоге.

Условные обозначения изделий в каталоге установлены разработчиком для составления заказов, расшифровка обозначений дается в каждом разделе.

ДАВЛЕНИЕ РАБОЧЕЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ СРЕДЫ (ПО ГОСТ 356-80)

Для арматуры из углеродистой и легированной стали

Условное (номинальное) давление	Пробное давление		Рабочее давл	пение Р _р , кгс/с	м² при темпе	ратуре среды	
PN, Krc/cm ²	P _{np} , Krc/cM ²	200 °C	250 °C	300 °C	350 °C	400 °C	425 °C
6	9	6	5	4	3,5	2,8	2,5
10	15	10	8,5	7,6	6,3	5,8	5
16	24	16	14	12	11	9	8
25	38	25	23	19	17	14	12
40	60	40	35	30	26	23	20
63	95	63	54	48	40	37	32
100	150	100	85	76	63	58	50
160	240	160	140	120	110	90	80
200	300	200	175	150	130	115	100
250	380	250	230	190	170	140	120
320	480	320	280	240	220	180	160
400	600	400	350	300	260	230	200

ДАВЛЕНИЕ РАБОЧЕЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ СРЕДЫ (ПО ГОСТ 356-80)

Для арматуры из коррозионностойкой и нержавеющей стали

Условное (номинальное) давление	Пробное давление		Рабочее давл	пение Р _р , кгс/с	м² при темпе	ратуре среды	
PN, Krc/cm²	P _{np} , κrc/cm ²	200 °C	300 °C	400 °C	480 °C	520 °C	560 °C
6	9	6	5	4	3,5	2,8	2,5
10	15	10	8,5	7,6	6,3	5,8	5
16	24	16	14	12	11	9	8
25	38	25	23	19	17	14	12
40	60	40	35	30	26	23	20
63	95	63	54	48	40	37	32
100	150	100	85	76	63	58	50
160	240	160	140	120	110	93	80
200	300	200	170	152	126	116	100
250	380	250	230	190	170	140	120
320	480	320	280	240	220	186	160
400	600	400	350	300	260	230	200

НОМЕНКЛАТУРА ОСНОВНЫХ МАТЕРИАЛОВ

Химический состав отливок стальных

Марка				Mad	совая доля	элемента, %			
стали	Углерод	Марганец	Кремний	Сера не более	Фосфор не более	Хром	Никель	Молибден	Титан
20Л	0,17-0,25	0,45-0,9	0,2-0,52	0,03	0,03	_	_	-	_
20ГЛ	0,17-0,25	1,10-1,40	0,30-0,50	0,020	0,020	Не более 0,30	Не более 0,30	-	_
20Х5МЛ	0,15-0,25	0,40-0,60	0,35-0,70	0.040	0.040	4,00-6,50	_	0,40-0,65	_
12Х18Н9ТЛ	Не более 0,12	1,00-2.00	0,20-1,00	0,30	0,035	17,0-20,0	8,0-11,0	-	5*C≤Ti≤0,7
12Х18Н12М3ТЛ	Не более 0,12	1,00-2,00	0,20-1,00	0,030	0,035	16,0-19,0	11,0-13,0	3,00-4,00	5*C≤Ti≤0,7

НОМЕНКЛАТУРА ОСНОВНЫХ МАТЕРИАЛОВ

Химический состав латунных деталей

Марка датин	Массовая доля элемента, %									
Марка латуни	Медь	Железо	Олово	Фосфор	Свинец	Цинк				
ЛС 59-1 ГОСТ 2060-2006	57-60	Не более 0,5	Не более 0,3	Не более 0,02	0,8-1,9	Остальное				

НОМЕНКЛАТУРА ОСНОВНЫХ МАТЕРИАЛОВ

Химический состав отливок чугунных

Марка	гост	Массовая доля элемента, %									
чугуна	1001	Углерод	Кремний	Марганец	Хром, не более	Сера, не более	Фосфор, не более				
C4 25	ГОСТ1412-85	3,2-3,4	1,4-2,2	0,7-1,0	_	0,15	0,2				
BY 40	ΓΟCT 7293-85	3,3-3,8	1,9-2,9	0,2-0,6	0,1	0,02	0,1				

НОМЕНКЛАТУРА ОСНОВНЫХ МАТЕРИАЛОВ

Химический состав стальных деталей

					Массовая	доля элеме	ента,%				
Марка стали	Углерод	Кремний	Марганец	Хром не более	Сера не более	Фосфор не более	Никель	Воль- фрам	Медь	Молиб- ден	Титан
20	0.17-0.24	0.17-0.37	0.35-0.65	Не более 0.25	0.04	0.04	_	_	_	-	_
25	0,21-0,31	0,15-0,39	0,47-0,83	Не более 0,25	0,04	0,04	-	-	-	-	-
35	0,031-0,041	0,015-0,039	0,047-0,083	Не более 0,25	0,04	0,04	_	-	-	-	-
45	0,041-0,051	0,015-0,039	0,047-0,083	Не более 0,25	0,04	0,04	-	-	-	-	-
35X	0,31-0,39	0,17-0,37	0,5-0,8	0,8-1,1	0,035	0,035	Не более 0,3	-	Не более 0,3	-	-
40X	0,36-0,44	0,17-0,37	0,5-0,8	0,8-1,1	0,035	0,035	Не более 0,3	-	Не более 0,3	-	-
30X13	0,26-0,35	Не более 0,80	Не более 0,80	12,0-14,0	0,030	0,025		-	-	-	-
09Г2С	Не более 0,12	0,5-0,8	1,30-1,70	Не более 0,3	0,035	0,03	Не более 0,3	-	Не более 0,3	-	-
10Γ2	0,07-0,15	0,17-0,37	1,2-1,6	0,3	0,035	0,035	0,3	-	-	-	-
15X5M	Не более 0,15	0,5	Не более 0,5	4,5-6,0	0,025	0,030	Не более 0,60	-	-	0,45-0,6	-
12X18H10T	Не более 0,12	Не более 0,8	Не более 2	17-19	0,035	0,035	9,0-11,0	_	-	-	5*C≤Ti≤0.8
10X17H13M2T	Не более 0,1	Не более 0,8	Не более 2,0	16,0-18,0	0,020	0,035	12,0-14,0	-	-	2,0-3,0	5*C≤Ti≤0.75
45X14H14B2M	0,4-0,5	Не более 0,8	Не более 0,7	13,0-15,0	0,020	0,035	13,0-15,0	2,0-2,8	-	0,25-0,40	-

НОМЕНКЛАТУРА ОСНОВНЫХ МАТЕРИАЛОВ

Химический состав наплавочных материалов

Марка электрода ГОСТ 10051-75	Углерод	Кремний	Марганец	Хром	Никель	Молибден	Ниобий	Сера не более	Фосфор не более	Твердость по Роквеллу
ЦН-12М	0,08-0,18	3,80-5,20	3,0-5,0	14,0-19,0	6,5-10,5	3,5-7,0	0,5-1,2	0,020	0,035	39-51
ЦН-6	0,05-0,12	4,80-6,40	1,0-2,0	15,0-18,4	7,0-9,0	-	-	0,025	0,030	29-39
ЦН-2	1,6-2,2	1,5-2,6	-	26-32	-	-	_	0,035	0,04	41,5-51,5

Марка проволоки ГОСТ 2246-70	Углерод	Кремний	Марганец	Хром	Никель	Титан	Сера не более	Фосфор не более	Твердость по Роквеллу
Св-13Х25Т	до 0,15	до 1,00	0,80	23-27	до 0,60	0,20-0,50	0,025	0,035	30-38
Св-10Х17Т	0,12	0,8	0,7	16-18	0,6	0,2-0,5	0,025	0,035	

ПНЕВМОПРИВОДЫ

Предназначены для управления кранами шаровыми и затворами дисковыми посредством передачи на шток усилия открытия или закрытия за счет действия управляющей среды на линиях трубопроводов, емкостях и другом оборудовании промысловых и газосборных пунктов, газоперерабатывающих заводов, подземных хранилищ газа, линейной части магистральных газопроводов, технологических обвязок компрессорных, дожимных, газораспределительных и газоизмерительных станций, а также других взрывопожароопасных и химически опасных производствах и объектах, связанных с обращением и (или) хранением взрывопожароопасных и токсичных веществ и смесей в условиях умеренного, холодного и тропического климатов.

Пневмопривод приводится в действие за счет энергии давления управляющего газа (силового агента) на поршень пневмоцилиндра. Поршень установлен на штоке, который жестко соединен с рейкой. Поступательное движение рейки преобразуется во вращательное движение шестеренки, которая, в свою очередь, передает его штоку трубопроводной арматуры, запорный орган которой поворачивается перпендикулярно оси направления потока транспортируемой среды, тем самым происходит открытие или закрытие проходного сечения.

По принципу действия пневмоприводы изготавливаются двух видов:

1 тип – пневмоприводы нормального действия (нормально открытые/закрытые);

2 тип – пневмоприводы двухстороннего действия.

Выбор типа пневмопривода определяет Заказчик во время заключения договора, исходя из назначения изделия при эксплуатации:

Выбор типа пневмопривода определяет Потребитель во время заключения договора, исходя из назначения изделия при эксплуатации:

Принцип действия нормально открытого/закрытого привода:

Кран находится в исходно открытом/закрытом положении. Подача электрического сигнала на узел управления привода закрывает/открывает кран шаровый, при отключении подачи электрического сигнала и/или силового агента за счет возвратного действия пружины установленной в пневмоцилиндре на пневмоприводах ПП100, ПП300 или давления рабочей среды в ресивере на пневмоприводах ПП700, ПП1000 и ПП1400, кран открывается/закрывается.

Принцип действия двухстороннего привода:

Подача электрического сигнала команды «Открыто» на узел управления привода открывает кран, подача электрического сигнала команды «Закрыто» на узел управления привода закрывает кран. При отключении подачи электрического сигнала и/или силового агента запорный орган крана остается в неизменном (закрепленном) положении.

По значению давления управляющего газа (силового агента) пневмоприводы изготавливаются двух типов: 1 тип – пневмоприводы номинальным давлением управляющего газа 0,6 МПа (как правило, нормального принципа действия);

2 тип – пневмоприводы номинальным давлением управляющего газа 5,5 МПа (как правило, двухстороннего принципа действия).

В зависимости от используемого блока управления пневмоприводы могут быть регулирующими. Управляющие среды:

СЖАТЫЙ ВОЗДУХ класс 1 по ГОСТ 17433-80;

НЕАГРЕССИВНЫЙ ПРИРОДНЫЙ ГАЗ по СТО Газпром 2-4.1-212-2008.

Неагрессивный природный газ содержит жидкие углеводороды, этиленгликоль, турбинные масла, углекислый газ, метанол (CH $_{\bullet}$ OH), воду и механические примеси (влага и конденсат – до 1500 мг/м 3 , механические примеси – до 10 мг/ m^3 с размером отдельных частиц до 1 мм, сероводород (H_2S) – не более 1 мг/ m^3 , натрий и калий (в сумме) – не более 1 мг/м^3).

Рабочая среда объектов газовых промыслов (ДКС, ПХГ и др.) может дополнительно содержать диэтиленгликоль, триэтиленгликоль, сероводород – более 1 мг/м³, кислород – до 1%.

Температура потока рабочей среды в трубопроводе:

 $om - 10 \degree C \partial o + 50 \degree C;$ – для арматуры подземной установки

om -10 $^{\circ}$ С до + 80 $^{\circ}$ С, кратковременно до 100 $^{\circ}$ С; – для арматуры надземной установки

Температура окружающей среды в соответствии с ГОСТ 15150-69:

om – 29 °C ∂o + 55 °C; – для районов с теплым климатом – для районов с умеренным климатом om – 40 °C ∂ o + 50 °C; – для районов с холодным климатом om -60 °C ∂ o +45 °C.

Подбор пневмопривода под изделие производится исходя из значения крутящего момента трубопроводной арматуры, на которую он устанавливается, и с учетом требований СТО Газпром 2-4.1-212-2008 «Общие технические требования к трубопроводной арматуре».

Основными элементами пневмопривода являются фильтр (для приводов с номинальным значением управляющего газа 5,5 МПа), блок подготовки воздуха (для приводов с номинальным значением управляющего газа 0,6 МПа), регулятор давления с двумя манометрами, узел управления, указатель конечного положения (типа «сухой контакт»), механический указатель положения запорного органа, корпус, пневмоцилиндр, поршень, шток, рейка, шестеренка и пружины (для пневмоприводов нормального принципа действия). Возможны различные компоновки пневмоприводов позиционерами, ресиверами, обратными воздушными клапанами и др. в зависимости от назначения и условий эксплуатации трубопроводной арматуры, на которую они устанавливаются.

Рекомендуемые комплектующие изделия пневмоприводов можно подобрать на следующих сайтах заводов-изготовителей:

Samson (Германия) http://samson.ru/main/programm.htm

SMC (Япония) http://www.smc-pneumatik.ru/cat.php

Camozzi (Италия) http://www.camozzi.ru/productiya

При необходимости открытия-закрытия арматуры в случае отсутствии давления силового агента в комплектации системы управления пневмопривода предусматривается ручной дублер.

Стандартная комплектация ручного дублера пневмоприводов:

ПП-100 – механический редуктор,

ПП-300; 700; 1000; 1400 – гидравлический насос.

Стандартная комплектация системы управления пневмопривода состоит из фильтра, регулятора давления и электропневматического узла управления (ЭПУУ-15), закрепленного на указателе конечного положения (УКП-03), который, в свою очередь, смонтирован на вал привода.

Пневмоприводы, в зависимости от крутящего момента изделий, на которые они устанавливаются, производятся следующих моделей: ПП-100, ПП-300, ПП-700, ПП-1000 и ПП-1400.

ОПИСАНИЕ РАБОТЫ

Силовой агент через фильтр (или блок подготовки воздуха) и регулятор давления подается на вход электропневматического узла управления (или позиционера). В зависимости от поступающего электрического сигнала силовой агент из узла управления поступает в одну из полостей пневмоцилиндра и, воздействуя на поршень, перемещает шток с закрепленной на нем рейкой. Зубчатая передача преобразует поступательное перемещение рейки во вращательное движение шестеренки, которая передает его на шток трубопроводной арматуры, открывая или закрывая ее запорный орган. Указатель конечного положение передает соответствующий сигнал о фактическом местонахождении (открыто/закрыто) запорного органа трубопроводной арматуры. Визуальный контроль положения запорного органа трубопроводной арматуры осуществляется механическим указателем положения, расположенным на УКП-03.

Пневмоприводы характеризуются высокой степенью надежности и безопасности, удобством в обслуживании и эксплуатации, обеспечивают крутящий момент, позволяющий производить быструю перестановку запорного органа трубопроводной арматуры в диапазоне рабочих давлений от 0 до PN.

Пневмоприводы могут устанавливаться на арматуру как надземного, так и подземного исполнения.

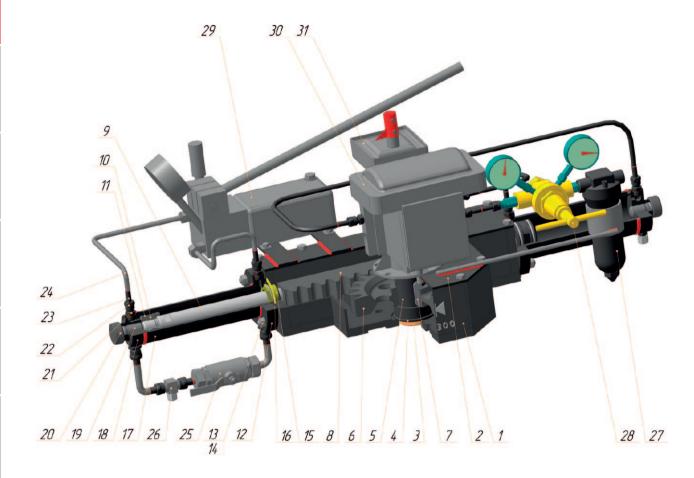
Присоединение приводов к трубопроводной арматуре по ISO 5211 (ИСО 5211:2001).

Изготовление пневмоприводов по ТУ 3791-001-97965425-2011.

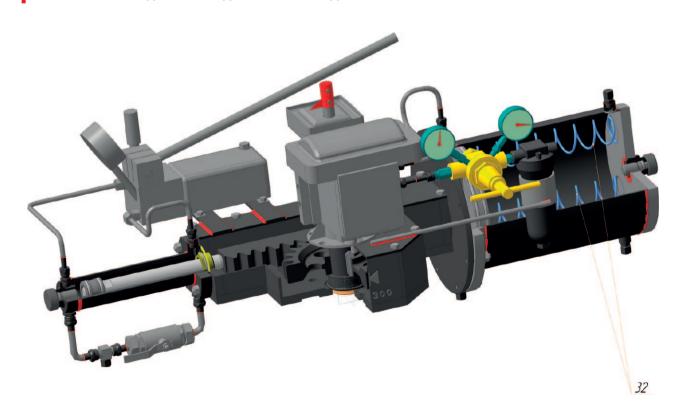
ВОЗМОЖНОСТИ И ПРЕИМУЩЕСТВА

Отдельные пневматический и гидравлический цилиндры позволяют избежать смешения газа и масла, устраняя, таким образом, возможность попадания масла в атмосферу во время работы пневмопривода.

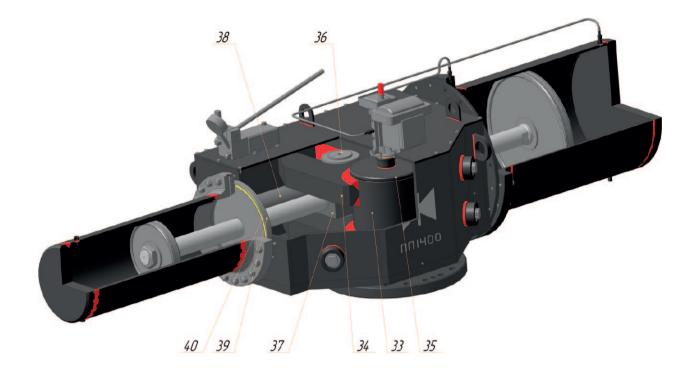
Реечная передача, которая используется в пневмоприводах, кроме моделей ПП1000 и ПП1400, имеет достаточно высокий КПД (0,95), что позволяет использовать энергию превращения поступательного движения поршней пневмоцилиндра во вращательное движение штока арматуры практически без потерь на трение. Рейка и зубчатое колесо изготавливаются из стали 40Х с высокой точностью обработки, что снижает трение и повышает долговечность данных деталей.


Кулисный механизм, который используется в моделях ПП1000 и ПП1400, уменьшает габаритные размеры и вес изделия. На направляющие кулисы, по которым скользит палец ползуна, соединенного со штоком пневмоцилиндров, выполняется наплавка - для получения поверхности с высокой твердостью. Палец изготавливается из стали 40Х. Направляющий вал ползуна обеспечивает дополнительную жесткость штока, компенсируя поперечные усилия, возникающие во время вращения кулисы.

Все контактирующие поверхности имеют высокое качество и точность обработки.

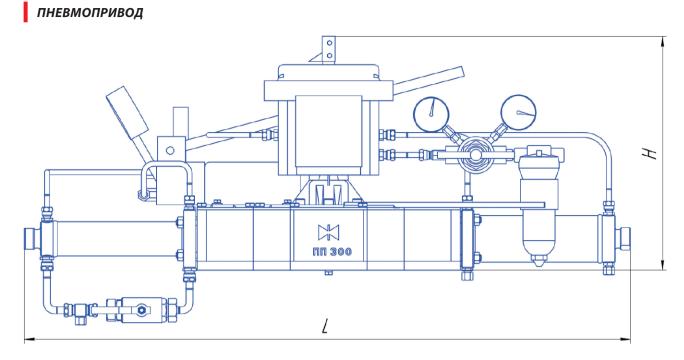

Ограничители хода на «открытие» и «закрытие» настраиваются независимо. Ограничители расположены по оси со штоком поршня, что позволяет избегать поперечных нагрузок на вал клапана.

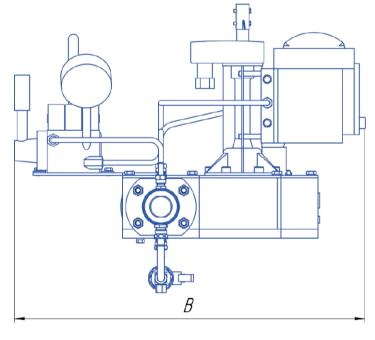
Полости гидроцилиндра соединены между собой байпасом, что существенно снижает время перетекания масла от одной полости гидроцилиндра к другой, повышая тем самым скорость перекрытия затвора. Во время работы гидродублера байпас перекрывается краном шаровым.


ОБЩИЙ ВИД ПНЕВМОПРИВОДА ДВУХСТОРОННЕГО ДЕЙСТВИЯ С ЗУБЧАТОЙ ПЕРЕДАЧЕЙ И ГИДРАВЛИЧЕСКИМ ДУБЛЕРОМ

ОБЩИЙ ВИД ПНЕВМОПРИВОДА НОРМАЛЬНО ОТКРЫТОГО/ЗАКРЫТОГО ДЕЙСТВИЯ С ЗУБЧАТОЙ ПЕРЕДАЧЕЙ И ГИДРАВЛИЧЕСКИМ ДУБЛЕРОМ

ОБЩИЙ ВИД ПНЕВМОПРИВОДА МОДЕЛИ ДВУХСТОРОННЕГО ДЕЙСТВИЯ С КУЛИСНЫМ МЕХАНИЗМОМ И ГИДРАВЛИЧЕСКИМ ДУБЛЕРОМ




ОБЩИЙ ВИД ПНЕВМОПРИВОДА МОДЕЛИ ДВУХСТОРОННЕГО ДЕЙСТВИЯ МОДЕЛИ ПП 100

МАТЕРИАЛЬНОЕ ИСПОЛНЕНИЕ СОСТАВНЫХ ДЕТАЛЕЙ ПНЕВМОПРИВОДОВ

Nº ⊓/⊓	Наименование детали	Материал
1	Корпус	09F2C
2	Крышка	09F2C
3	Подшипник	ЛС 59-1
4	Кольцо	09F2C
5	Вал	09F2C
6	Шестерня	40X
7	Шпонка	45
8	Рейка	40X
9	Шток	30X13
10	Поршень	09F2C
11	Кольцо	ГОСТ 9833-73
12	Фланец цилиндра	09F2C
13	Шпилька	40X
14	Гайка	35X
15	Втулка штока	ЛС 59-1
16	Прокладка цилиндра	ГОСТ 9833-73
17	Корпус цилиндра	09F2C
18	Крышка цилиндра	09F2C
19	Ограничитель	09F2C
20	Колпак	09F2C
21	Штуцер	40X
22	Гайка накидная	40X
23	Ниппель	12X18H10T
24	Трубка	12X18H10T
25	Кран шаровый	КШ 10-160
26	Тройник	09F2C
27	Фильтр осушитель	09Г2С
28	Редуктор	ЛС 59-1
29	Насос гидравлический	09Г2С
30	ЭПУУ-15	По умолчанию
31	УКП-03	По умолчанию
32	Пружина	50XΦA (60C2)
33	Втулка кулисы	09F2C
34	Направляющие кулисы	09F2C
35	Опора верхняя	09F2C
36	Ось	30X13
37	Ползун	09F2C
38	Направляющая ползуна	30X13
39	Фланец промежуточный	09F2C
40	Прокладка цилиндра	ГОСТ 9833-73

ОСНОВНЫЕ РАЗМЕРЫ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ

U\U Nō	Марка пневмо-	Ручной дублер (по умолчанию)		итный раз иоприво <i>д</i>		Номинальное давление управляющего газа,	Максимальный крутящий момент,	Macca, кг	Управление приводом (по умолчанию)
11/11	привода	(по умолчанию)	L	В	Н	МПа	Н*м	KI	(по умолчанию)
1	ПП 100	механический (редуктор)	560	360	650	5,5	2 000	76	ЭПУУ-15 на УКП-03
2	ПП 300	гидравлический (насос)	1 200	700	500	5,5	10 500	89	ЭПУУ-15 на УКП-03
3	ПП 700	гидравлический (насос)	2 340	760	610	5,5	40 000	385	ЭПУУ-15 на УКП-03
4	ПП 1000	гидравлический (насос)	2 560	1 170	580	5,5	125 000	834	ЭПУУ-15 на УКП-03
6	ПП 1400	гидравлический (насос)	3 370	1 090	960	5,5	391 600	2 630	ЭПУУ-15 на УКП-03
7	ПП 100-6	механический (редуктор)	560	360	650	0,6	1 175	76	ЭПУУ-15 на УКП-03
8	ПП 300-6р	механический (редуктор)	1400	620	500	0,6	10500	248	ЭПУУ-15 на УКП-03
9	ПП-300-6г	гидравлический (насос)	1 350	700	500	0,6	3 880	124	ЭПУУ-15 на УКП-03
10	ПП 700-6	гидравлический (насос)	2 350	1 200	760	0,6	62 800	916	ЭПУУ-15 на УКП-03
11	ПП 1000-6	гидравлический (насос)	3 390	1 170	580	0,6	140 000	1 803	ЭПУУ-15 на УКП-03

ОСНОВНЫЕ РАЗМЕРЫ НОРМАЛЬНО ОТКРЫТЫХ/ЗАКРЫТЫХ ПНЕВМОПРИВОДОВ

Nº ⊓/⊓	Марка пневмо-	Ручной дублер (по умолчанию)	Габаритный размеры пневмопривода, мм		Номинальное давление управля-	Максимальный крутящий	Macca,	Управление приводом (по умолчанию)	
11/11	привода	(по умолчанию)	L	В	Н	ющего газа, МПа	момент, Н*м	КГ	(по умолчанию)
1	ПП 100 НО/Н3	механический (редуктор)	560	360	650	0,6	473	77	ЭПУУ-15 на УКП-03
2	ПП-300р НО/Н3	механический (редуктор)	1 985	700	500	0,6	4 084	482	ЭПУУ-15 на УКП-03
3	ПП 300г НО/Н3	гидравлический (насос)	1 733	700	500	0,6	1 480	205	ЭПУУ-15 на УКП-03
4	ПП-700	гидравлический (насос)	2 350	1 200	760	0,6	40 000	932	ЭПУУ-15 на УКП-03
5	ПП 1000	гидравлический (насос)	3 390	1 170	580	0,6	100 450	1 835	ЭПУУ-15 на УКП-03

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ К КРАНАМ ШАРОВЫМ С ПОЛИМЕРНЫМ УПЛОТНЕНИЕМ СЕДЛА ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 5,5 МПА

DN				PN, ĸ	rc/cm²			
DN	16	25	40	63	80	100	160	250
50	ПП 100							
80	ПП 100							
100	ПП 100							
150	ПП 100	ПП 300						
200	ПП 100	ПП 100	ПП 100	ПП 300				
250	ПП 100	ПП 100	ПП 100	ПП 300				
300	ПП 100	ПП 300	ПП 700					
350	ПП 300	ПП 700	ПП 700					
400	ПП 300	ПП 700	ПП 700	ПП 700				
500	ПП 300	ПП 300	ПП 700	ПП 1000				
600	ПП 700	ПП 1000	ПП 1000					
700	ПП-700	ПП-700	ПП-700	ПП-700	ПП 1000	ПП 1000	ПП 1000	ПП 1000
1000	ПП 1000	-	-					
1200	ПП 1000	ПП 1000	ПП 1000	ПП 1400	ПП 1400	ПП 1400	_	-
1400	ПП 1400	_	_					

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ К КРАНАМ ШАРОВЫМ С ПОЛИМЕРНЫМ УПЛОТНЕНИЕМ СЕДЛА ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

DN				PN, ĸı	-c/cm²			
DN	16	25	40	63	80	100	160	250
50	ПП 100-6							
80	ПП 100-6							
100	ПП 100-6	ПП 300-6р						
150	ПП 100-6	ПП 300-6р	ПП 300-6р					
200	ПП 100-6	ПП 300-6р						
250	ПП 300-6р							
300	ПП 300-6р	ПП 700-6						
350	ПП 300-6р	ПП 700-6	ПП 700-6					
400	ПП 300-6р	ПП 700-6	ПП 700-6	ПП 700-6				
500	ПП 300-6р	ПП 300-6р	ПП 700-6	ПП 1000-6				
600	ПП 700-6	ПП 1000-6	ПП 1000-6					
700	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	ПП 1000-6
1000	ПП 1000-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	-	-	_	_
1200	ПП 1000-6	ПП 1000-6	_	-	_	_	_	_

ПРИМЕНЯЕМОСТЬ НОРМАЛЬНО ОТКРЫТЫХ/ЗАКРЫТЫХ ПНЕВМОПРИВОДОВ К КРАНАМ ШАРОВЫМ С ПОЛИМЕРНЫМ УПЛОТНЕНИЕМ СЕДЛА ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

	•								
DN				PN, KI	rc/cm²				
DN	16	25	40	63	80	100	160	250	
50	ПП100	ПП100	ПП100	ПП100	ПП100	ПП100	ПП100	ПП100	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
80	ПП100	ПП100	ПП100	ПП100	ПП100	ПП100	ПП100	ПП300г	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
100	ПП100	ПП100	ПП100	ПП100	ПП300р	ПП300г	ПП300г	ПП300г	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
150	ПП100	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
200	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	ПП700	ПП700	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	HO/H3	
250	ПП 300p	ПП300р	ПП300р	ПП300р	ПП300р	ПП300р	ПП700	ПП700	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	HO/H3	
300	ПП300р	ПП300р	ПП300р	ПП300р	ПП700	ПП700	ПП700	ПП700	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
350	ПП300р	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	
	НО/Н3	HO/H3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
400	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
500	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП 1000	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	
600	ПП700	ПП700	ПП700	ПП700	ПП700	ПП700	ПП 1000	ПП 1000	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	HO/H3	
700	ПП700	ПП700	ПП700	ПП700	ПП 1000	ПП 1000	ПП 1000	ПП 1000	
	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	НО/Н3	HO/H3	HO/H3	
1000	ПП 1000 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	ПП 1000 HO/H3	-	-	-	-	

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ К КРАНАМ ШАРОВЫМ С УПЛОТНЕНИЕМ СЕДЛА МЕТАЛЛ ПО МЕТАЛЛУ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 5,5 МПА

DN								
DN	16	25	40	63	80	100	160	250
50	ПП 100							
80	ПП 100							
100	ПП 100							
150	ПП 100	ПП 100	ПП 100	ПП 100	ПП 300	ПП 300	ПП 300	ПП 300
200	ПП 300	ПП 700						
250	ПП 300	ПП 700	ПП 700					
300	ПП 700	ПП 700	ПП 700	ПП 700				
350	ПП 300	ПП 300	ПП 700					
400	ПП 700	ПП 1000						
500	ПП 700	ПП 700	ПП 700	ПП 700	ПП 1000	ПП 1000	ПП 1000	ПП 1000
600	ПП 700	ПП 700	ПП 1000	ПП 1000	ПП 1000	ПП 1000	ПП 1400	ПП 1400
700	ПП 700	ПП 1000	ПП 1000	ПП 1000	ПП 1000	ПП 1400	ПП 1400	ПП 1400
1000	ПП 1000	ПП 1400	_	-				
1200	ПП 1400	ПП 1400	ПП 1400	ПП 1400	_	_	_	-

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ КРАНАМ ШАРОВЫМ С УПЛОТНЕНИЕМ СЕДЛА МЕТАЛЛ ПО МЕТАЛЛУ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

DN		PN, krc/cm²									
DN	16	25	40	63	80	100	160	250			
50	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6			
80	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 300-6р			
100	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р			
150	ПП 100-6	ПП 100-6	ПП 300-6р								
200	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	-			
250	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	-	-			
300	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	-	_	_	_			
350	ПП 300-6р	ПП 300-6р	-	-	-	-	-	-			
400	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 1000-6			
500	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	ПП 1000-6			
600	ПП 700-6	ПП 700-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	-	-			
700	ПП 700-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	_	_	_			
1000	ПП 1000-6	-	-	_	_	-	-	-			

ПРИМЕНЯЕМОСТЬ НОРМАЛЬНО ОТКРЫТЫХ/ЗАКРЫТЫХ ПНЕВМОПРИВОДОВ К КРАНАМ ШАРОВЫМ С УПЛОТНЕНИЕМ СЕДЛА МЕТАЛЛ ПО МЕТАЛЛУ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

DN	PN, krc/cm²							
DN	16	25	40	63	80	100	160	250
50	ПП100 НО/Н3	-	_					
80	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3
100	ПП100 НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300р НО/Н3	ПП300р НО/Н3
150	ПП300р НО/Н3	-	-					
200	ПП300р НО/Н3	ПП300р НО/Н3	ПП300р НО/Н3	-	-	-	-	_
250	ПП300р НО/Н3	-	-	-	-	-	-	-
400	ПП700 НО/Н3	_	_					
500	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	-
600	ПП700 НО/Н3	ПП700 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	ПП 1000 НО/Н3	_	_
700	ПП 1000 НО/Н3	ПП 1000 НО/НЗ	ПП 1000 НО/Н3	ПП 1000 НО/Н3	_	_	_	_

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ К ЗАТВОРАМ ДИСКОВЫМ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 5,5 МПА

DN				PN, ĸrc/cm²			
DN	6	10	16	25	40	63	100
50	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100
80	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100
100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100
125	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100
150	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100
200	ПП 100	ПП 100	ПП 100	ПП 100	ПП 100	ПП 300	ПП 300
250	ПП 100	ПП 100	ПП 100	ПП 100	ПП 300	ПП 300	ПП 300
300	ПП 100	ПП 100	ПП 100	ПП 300	ПП 300	ПП 300	ПП 300
350	ПП 100	ПП 100	ПП 300	ПП 300	ПП 300	ПП 300	ПП 700
400	ПП 300	ПП 300	ПП 300	ПП 300	ПП 300	ПП 700	ПП 700
450	ПП 300	ПП 300	ПП 300	ПП 300	ПП 700	ПП 700	ПП 700
500	ПП 300	ПП 300	ПП 300	ПП 300	ПП 700	ПП 700	ПП 700
600	ПП 300	ПП 300	ПП 700	ПП 700	ПП 700	ПП 700	-
700	ПП 700	ПП 700	ПП 700	ПП 700	ПП 700	-	-
800	ПП 700	ПП 700	ПП 700	ПП 700	ПП 1000	_	-
900	ПП 700	ПП 700	ПП 700	ПП 700	-	-	-
1000	ПП 700	ПП 700	ПП 1000	ПП 1000	-	_	-
1200	ПП 700	ПП 1000	ПП 1000	ПП 1000	-	-	-
1400	ПП 1000	ПП 1000	ПП 1400	ПП 1400	-	-	-

ПРИМЕНЯЕМОСТЬ ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО ДЕЙСТВИЯ К ЗАТВОРАМ ДИСКОВЫМ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

DN				PN, κΓC/CM ²			
DN	6	10	16	25	40	63	100
50	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6
80	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6
100	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6
125	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 300-6г
150	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП 300-6г
200	ПП 100-6	ПП 100-6	ПП 100-6	ПП 100-6	ПП-300-6	ПП 300-6г	ПП 300-6г
250	ПП 100-6	ПП 100-6	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р
300	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р
350	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	-
400	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 700-6	ПП 700-6
450	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 700-6	ПП 700-6	ПП 700-6
500	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 300-6р	ПП 700-6	ПП 700-6	ПП 700-6
600	ПП 300-6р	ПП 300-6р	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	-
700	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	-	-
800	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	ПП 1000-6	-	_
900	ПП 700-6	ПП 700-6	ПП 700-6	ПП 700-6	-	-	-
1000	ПП 700-6	ПП 700-6	ПП 1000-6	ПП 1000-6	_	_	-
1200	ПП 700-6	ПП 1000-6	ПП 1000-6	ПП 1000-6	-	-	-
1400	ПП 1000-6	ПП 1000-6	-	-	_	_	-

ПРИМЕНЯЕМОСТЬ НОРМАЛЬНО ОТКРЫТЫХ/ЗАКРЫТЫХ ПНЕВМОПРИВОДОВ К ЗАТВОРАМ ДИСКОВЫМ ПРИ НОМИНАЛЬНОМ ДАВЛЕНИИ УПРАВЛЯЮЩЕГО ГАЗА 0,6 МПА

DN	PN, κτc/cm²								
DIV	6	10	16	25	40	63	100		
50	ПП100 НО/Н3								
80	ПП100 НО/Н3								
100	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	-		
125	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3		
150	ПП100 НО/Н3	ПП100 НО/Н3	ПП100 НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3		
200	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП300г НО/Н3	ПП 300р НО/Н3		
250	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300p НО/Н3	ПП 300р НО/Н3	-		
300	ПП 300p НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	-	-	-		
350	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП 300р НО/Н3	-	-	-		
400	ПП 300p НО/Н3	ПП 300p НО/Н3	ПП 300р НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3		
450	ПП 300р НО/Н3	ПП 300р НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3		
500	ПП700 НО/Н3								
600	ПП700 НО/Н3								
700	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	-	-		
800	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП1000 НО/Н3	-	-		
900	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	ПП700 НО/Н3	-	-	-		
1000	ПП700 НО/Н3	ПП700 НО/Н3	ПП1000 НО/Н3	ПП1000 НО/Н3	-	-	-		
1200	ПП700 HO/H3	ПП1000 НО/Н3	ПП1000 НО/Н3	ПП1000 НО/Н3	-	-	-		
1400	ПП1000 НО/Н3	ПП1000 НО/Н3	-	_	-	-	-		

ЗАВИСИМОСТЬ КРУТЯЩЕГО МОМЕНТА ОТ ДАВЛЕНИЯ УПРАВЛЯЮЩЕГО ГАЗА ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО

Давление управляющей	Крутящий момент на приводе, Н∙м							
среды, МПа	ПП 100	ПП 300	ПП 700	ПП 1000	ПП 1400			
3	2000	10500	32900	70900	293900			
4	2000	10500	40000	94500	391600			
5,5	2000	10500	40000	125000	391600			
7	2000	10500	40000	125000	391600			
8	2000	10500	40000	125000	391600			

ЗАВИСИМОСТЬ КРУТЯЩЕГО МОМЕНТА ОТ ДАВЛЕНИЯ УПРАВЛЯЮЩЕГО ГАЗА ПНЕВМОПРИВОДОВ ДВУХСТОРОННЕГО

Давление	Крутящий момент на приводе, Н-м							
управляющей среды, МПа	ПП 100-6	ПП 300-6г	ПП 300-6р	ПП 700-6	ПП 1000-6			
0,3	585	1940	7430	32000	50200			
0,4	785	2585	9900	40000	66900			
0,5	980	3235	10500	40000	83700			
0,6	1175	3880	10500	40000	100450			
0,8	1565	5175	10500	40000	125000			
1	1960	6470	10500	40000	125000			

ЗАВИСИМОСТЬ КРУТЯЩЕГО МОМЕНТА ОТ ДАВЛЕНИЯ УПРАВЛЯЮЩЕГО ГАЗА НОРМАЛЬНО ОТКРЫТЫХ/ЗАКРЫТЫХ

ППЕВМОПРИВОЛОВ										
Давление	Крутящий момент на приводе, Н∙м									
управляющей среды, МПа	ПП 100 НО/Н3	ПП 300г НО/Н3	ПП 300р НО/Н3	ПП700 НО/Н3	ПП1000 НО/Н3					
0,3	-	-	1040	32000	50200					
0,4	-	190	1760	40000	66900					
0,5	278	835	3000	40000	83700					
0,6	473	1480	4084	40000	100450					
0,8	473	1488	4084	40000	125000					
1	473	1488	4084	40000	125000					

ПРИЛОЖЕНИЕ А

ПОВОРОТНАЯ ЗАГЛУШКА

Заглушка поворотная (обтюратор, реверсивная заглушка, очковая заглушка, «очки Шмидта») - это деталь трубопровода, предназначенная для периодического перекрывания потока среды, транспортируемой трубопроводом, и состоящая из двух частей - глухой и сквозной, монтируемых во фланцевое соединение. Поток перекрывается путем монтажа во фланцевое соединение глухой части заглушки поворотной и открывается при монтаже во фланцевое соединение части заглушки поворотной с отверстием.

Заглушка поворотная предназначена для временной или постоянной герметизации участка трубопровода. Заглушки поворотные применяются для отсечения трубопровода с целью проведения ремонта, реконструкции и т.п.

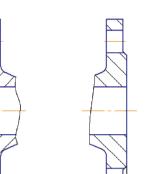
Температура применения поворотных заглушек зависит от марки стали, из которой они изготовлены, размеры – от условного диаметра изделий.

Поворотной заглушки изготавливаются согласно АТК 26-18-5-93, Т-ММ-25-01-06 и по требованию Потребителя.

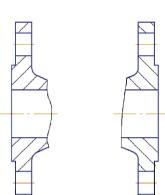
ОБЩИЙ ВИД ПОВОРОТНОЙ ЗАГЛУШКИ

приложение Б

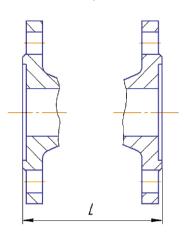
ТАБЛИЦА ПРИМЕНЯЕМОСТИ ИЗДЕЛИЙ ДЛЯ РАБОЧИХ СРЕД

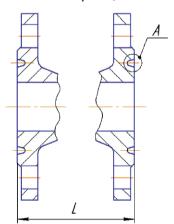

PN, KFC/CM ²	Концентрация сероводорода СН ₂ S (об.)	Материальное исполнение	Климатическое исполнение (ГОСТ 15150-69)	Рабочие среды		
16 25 40 63 100 160 200 250 320 400	<4 - - - - - - -	углеродистое	У, Т			
16 25 40 63 100 160 200 250 320 400	<4 - - - - - - -	хладостойкое	У, Т, ХЛ, УХЛ	Неагрессивный природный газ, содержащий жидкие углеводороды, этиленгликоль, турбинные масла, углекислый газ, метанол (СН ₃ ОН), воду и механические примеси в следующих количествах: влага и конденсат - до 1500 мг/м³; механические примеси - до 10 мг/м³, размер отдельных частиц в примеси - до 1мм; натрий и калий (в сумме) - не более 1 мг/м³. Примечание - Рабочая среда для арматуры		
16 25 40 63 100 160 200 250 320 400	<4 - - - - - - -	жаропрочное	У, Т	объектов газовых промыслов (ДКС, ПХГ и др.) может дополнительно содержать диэтиленгликоль, триэтиленгликоль, кислород – до 1%. Точка росы газа по воде при давлении 5,5 МПа: зимой - минус 5°C; летом - 0°C. Примечание – Для объектов газовых промыслов (ДКС, ПХГ и др.)		
16 25 40 63 100 160 200 250 320 400	Без ограничений	нержавеющее	У, Т, ХЛ УХЛ	содержание влаги в паровой фазе: - зимой - до 89,77 мг/м³; - летом - до 125,19 мг/м³. Жидкие и газообразные углеводороды, кислоты, нефть, нефтепродукты, неагрессивный природный газ, этиленгликоль, турбинные масла, углекислый газ, газоконденсат, вода, пар, воздух, аммиак, а так же другие жидкости, и газы неагрессивные к примененным в изделии материалам.		
16 25 40 63 100 160 200 250 320 400	Без ограничений	молибденистое	У, Т, ХЛ УХЛ			

 * Для сред содержащих сероводород ($H_{_2}$ S). Углеродистая и низколегированная стали могут применяться в средах содержащих сероводород при концентрациях отличных от табличных по СТ ЦКБА 052-2008


ПРИЛОЖЕНИЕ В

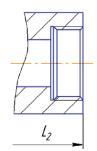
СТРОИТЕЛЬНЫЕ ДЛИНЫ ДЛЯ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ПО ГОСТ 12815-80


Исполнение фланцев 1

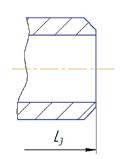

Исполнение фланцев 2

Исполнение фланцев 3

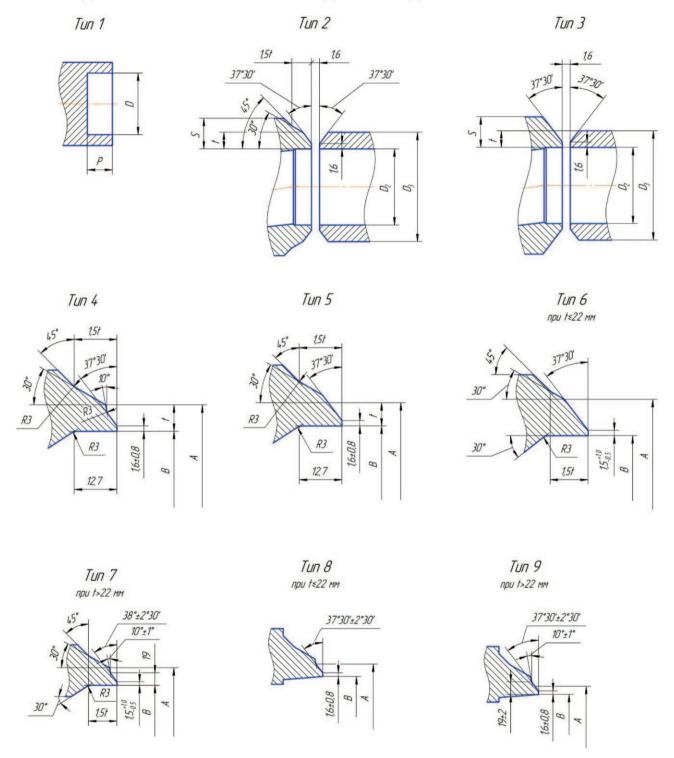
Исполнение фланцев 7



Под прокладку овального/восьмиугольного


Исполнение фланцевое с фланцами

Исполнение муфтовое



Исполнение под приварку

приложение г

ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ИЗДЕЛИЙ ПОД ПРИВАРКУ

ТИП 1

DN	10	15	20	25	32	40	50
D, мм	17,55	21,72	27,05	33,78	42,54	48,64	61,11
P _{min} , мм	9,	,6		15,8			

ТИП 2 И 3

DN	8	10	15	20	25	32	40	50	80
D2, мм	9,2	12,5	15,8	20,9	26,6	35,1	40,9	52,5	62,7
D3, мм	13,7	17,1	21,3	26,7	33,4	42,2	48,3	6,3	73
t, mm	2,2	2,3	2,8	2,9	3,4	3,6	3,7	3,9	5,2

ТИП 4 – 9

	А, мм, от-до	PN, кгс/см²											
DN		≤4	40	≤1	100	10	60	250		400			
		В, мм	t, мм	В, мм	t, мм	В, мм	t, mm	В, мм	t, мм	В, мм	t, мм		
65	73-75	63	5,15	63	5,15	59	7	59	7	54	9,55		
80	89-91	78	5,5	78	5,5	74	7,6	74	7,6	67	11,15		
100	114-117	102	6	102	6	97	8,55	92	11,15	87	13,5		
125	141-144	128	6,55	128	6,55	122	9,55	116	12,7	110	15,9		
150	168-172	154	7,1	154	7,1	146	10,95	140	14,25	132	18,25		
200	218-223	203	8,2	198	10,3	194	12,7	183	18,25	173	23		
250	273-278	255	9,25	248	12,7	243	15,1	230	21,45	216	28,6		
300	324-329	305	9,55	303	10,3	289	17,5	273	25,4	257	33,3		
350	356-362	337	9,55	333	11,15	318	19,05	300	27,8	284	35,7		
400	406	381	12,7	381	12,7	364	21,45	344	30,95	325	40,5		
450	457	410	23,85	410	23,85	387	34,95	387	34,95	367	45,25		
500	508	456	26,2	456	26,2	432	38,1	419	44,45	408	50		
550	559-567	540	9,55	540	9,55	476	41,3	464	47,65	464	47,65		
600	610-619	591	9,55	591	9,55	518	46	505	52,35	505	52,35		
650	660-670	645		645		635		635	12,7	635	12,7		
700	711-721	695		695	7,9	686	12,7	679	15,9	679	15,9		
750	762-772	746	7,9	746		737		730		730			
800	813-825	797	7,5	787		781		778	17,5	778	17,5		
850	864-876	848		838	12,7	832	15,9	829		829			
900	914-927	899		889		883		876	19,05	876	19,05		

приложение д

ХИМИЧЕСКИЙ СОСТАВ, МЕХАНИЧЕСКИЕ СВОЙСТВА И РЕЖИМЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОСНОВНЫХ МАРОК СТАЛЕЙ ТПА

Вид	060	значение	Химический состав. %								
получения заготовки	гост	Марка материала	С	Mn	Р	S	Si	Cr	Мо		
	977-88	20Л	0.15-0.26	0.35-1.08	Не более 0.035	Не более 0.035	0.12-0.67	-	-		
	21357-87	20ГЛ	0.15-0.27	1.00-1.50	Не более 0.020	Не более 0.020	0.12-0.67	Не более 0.40	-		
ОТЛИВКИ	977-88	12Х18Н9ТЛ	Не более 0.13	0.88-2.20	Не более 0.035	Не более 0.30	0.12-0.67	16.5-20.5	-		
ОПИВКИ	977-88	12Х18Н12М3ТЛ	Не более 0.13	0.88-2.20	Не более 0.035	Не более 0.030	0.12-0.67	15.5-19.5	2.98-4.02		
	977-88	20Х5МЛ	0.13-0.27	0.30-0.70	Не более 0.040	Не более 0.040	0.12-0.67	3.50-7.00	0.38-0.67		
	977-88	30ХМЛ	0.23-0.37	0.43-0.95	Не более 0.040	Не более 0.040	0.12-0.67	0.73-1.35	-		
	1050-88	20	0.17-0.24	0.35-0.65	Не более 0.035	Не более 0.04	0.12-0.67	Не более 0.25	-		
	19281-89	09Г2С	Не более 0.14	1.30-1.80	Не более 0.040	Не более 0.045	0.12-0.67	Не более 0.305	-		
	4543-71	10Г2	0,06-0,16	1,15-1,65	Не более 0.035	Не более 0.035	0,15-0,39	Не более 0.30	-		
	5949-75	12X18H10T	Не более 0.13	Не более 2.05	Не более 0.035	Не более 0.045	0.12-0.67	16.8-19.2	-		
	5949-75	10X17H13M2T	Не более 0.11	Не более 2.05	Не более 0.025	Не более 0.045	0.12-0.67	15.8-19.2	1.90-3.10		
ПРОКАТ	5949-75	30X13	0.26-0.35	Не более 0.80	Не более 0.025	Не более 0.045	0.12-0.67	12.0-14.0	-		
	5949-75	09Х14Н16Б	0.06-0.13	0.95-2.05	Не более 0.040	Не более 0.045	0.12-0.67	12.85-15.15	-		
	2060-2006	ЛС 59-1	-	-	Не более 0.020	Не более 0.045	0.12-0.67	-	-		
	20072-74	15X5M	Не более 0.16	Не более 0.52	Не более 0.030	Не более 0.045	0.12-0.67	4.45-6.10	0.43-0.62		
	4543-71	40X	0.35-0.45	0.48-0.82	Не более 0.035	Не более 0.045	0.12-0.67	0.78-1.15	-		
	5632-72	XH35BT	Не более 0.13	0.95-2.05	Не более 0.035	Не более 0.045	0.12-0.67	13.85-16.20	-		
	8479-70	20	0.17-0.24	0.35-0.65	Не более 0.035	Не более 0.045	0.12-0.67	Не более 0.25	-		
	8479-70	09Г2С	Не более 0.14	1.30-1.80	Не более 0.04	Не более 0.045	0.12-0.67	Не более 0.305	-		
ПОКОВКИ	25054-81	12X18H10T	Не более 0.13	Не более 2.05	Не более 0.035	Не более 0.045	0.12-0.67 16.8		-		
	25054-81	10X17H13M2T	Не более 0.11	Не более 2.05	Не более 0.025	Не более 0.045	0.12-0.67	15.8-19.2	1.90-3.10		
	25054-81	30X13	0.26-0.35	Не более 0.80	Не более 0.025	Не более 0.045	0.12-0.67	12.0-14.0	-		

Химический состав. %			Механические свойства. не менее								
			σ_{B} . σ_{T} . σ_{C}		кси. д	ж/см²	Твердость. НВ	Режимы термической обработки. °C			
Ni	Cu	Другие	МПа	МПа	δ. %	ψ. %	+20°C	-60°C	ПВ		
-	-	-	412	216	22	35	49	-	-	Нормализация 880-900	Отпуск 880-900
Не более 0.40	-	-	500	300	20	35		30	-	Нормализация 920-940	-
7.5-11.5	-	5*C≤Ti≤0.7	441	196	25	32		30	-	Закалка 1050-1100	Охлаждение в масле воде или на воздухе
10.5-13.5	-	5*C≤Ti≤0.7	441	216	25	32		30	-	Закалка 1100-1150	Охлаждение в воде
-	-	-	589	392	16	30	39	-	-	Нормализация 940-960	Отпуск 680-720
-	-	-	530	285	18	25	30	-	-	Нормализация 850-890	Отпуск 550-650
-	-	-	410	245	25	55		-	(≤163 без т/о)	Нормализация 900	Отпуск 600
Не более 0.305	-	-	430	295	21	-		-		-	-
Не более 0.30	Не более 0.30	-	420	245	22	50	37,2	30	≤197	Нормализация 920	Охлаждение на воздухе
8.85-11.15	-	5*C≤Ti≤0.8	510	196	40	55		30		Закалка 1020-1100	Охлаждение в масле воде или на воздухе
11.85-14.15	-	5*C≤Ti≤0.75	510	215	40	55		30		Закалка 1050-1100	Охлаждение в масле воде или на воздухе
-	-	-	650	440	16	55	78	30	131-217	Закалка 1000-1130	Отпуск 660-770
13.85-17.15	-	Ce≤0.02 0.09≤Nb≤1.3 B≤0.005	490	196	35	50		30		Закалка 1000-1130	Охлаждение на воздухе
Не более 1.00	57.0-60.0	0.8≤Pb≤1.9	360	-	22	-		-		-	-
Не более 0.60	-	-	390	215	22	50	12	-	≤217	Отжиг 840-860	Охлаждение с печью
-	-	-	980	785	10	45	59	-	≤217	Нормализация 860	Отпуск 500
33.65-38.35	-	1.0≤Ti≤1.6 2.75≤W≤3.55	730	390	15	25	56	-	217-269	Закалка 1080-1100, Старение 850 10 ч, Старение 700 25-50 ч	Охлаждение в воде Охлаждение на воздухе Охлаждение с печью
-	-	-	470	245	22	48	88	-	143-179	Устанавливается заводом-изготовителем	
Не более 0.305	-	-	530	275	20	40		30	156-197	Устанавливается заводом-изготовителем	
8.85-11.15	-	5*C≤Ti≤0.8	510	196	38	52		30	≤179	Закалка Охлаждение в воде 1100-1150 или на воздухе	
11.85-14.15	-	5*C≤Ti≤0.75	510	196	38	50		30	<200	Закалка 1100-150	Охлаждение в воде или на воздух
-	-	-	735	588	12	40	39	30	235-277	Закалка 1000-1050	Отпуск 700

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Эл. почта: vpk@nt-rt.ru || Caйт: http://varklapan.nt-rt.ru